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Amplification and distortion of a periodic rectangular driving signal by a noisy bistable system
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The response of a symmetric bistable system driven by a time periodic rectangular input signal and
subject to a white noise is studied. The analysis shows that the stochastic resonant enhancement of a
weak amplitude signal implies a distortion of the input shape for intermediate frequencies, due to the
dispersivity of the response. On the other hand, the shape can be maintained and the amplitude greatly
amplified for very low input frequencies and some values of the noise strengths. These results are corro-
borated by numerical solutions of the Fokker-Planck equation.

PACS number(s): 05.40.+j

I. INTRODUCTION

The analysis of the response of stochastic systems
driven by time dependent forces has been the subject of
numerous studies, both at the theoretical and experimen-
tal levels [1]. A large amount of work has been devoted
to understanding the phenomenon of stochastic reso-
nance (SR), i.e., the amplification of a weak low frequen-
cy sinusoidal signal by the concerted actions of the noise,
and the nonlinearity of the system. This phenomenon ex-
poses a qualitative aspect of the noise, which is usually
blurred by its diffusive effect. Namely, noise can be
looked upon as something useful, in the sense that, be-
cause of its presence, it allows a weak input signal to be
amplified. These two aspects of the noise have been dis-
cussed recently by Dykman et al. [2].

In this work we intend to explore further the effects of
noise, nonlinearity, and time periodic external forces. We
will consider the simple case of an overdamped bistable
model subject to an external driving force, which is time
periodic but not necessarily sinusoidal. In particular, we
will consider the driving field to be a rectangular signal in
order to analyze the response of the nonlinear system
subject to a complex input with many harmonics. A
question addressed in Ref. [2] is the degree of distortion
of the shape of the driving field as it becomes amplified by
the noise system. We will see that a rectangular signal
becomes somewhat distorted for the range of parameters
where the stochastic resonance enhancement takes place
if the fundamental frequency of the driver is not very
low. The distortion depends essentially on the different
degrees of amplification of the harmonics of the input
and not on the generation of new harmonics. On the oth-
er hand, for driving fields with very small fundamental
frequencies, we will see that it is possible to get a large
amplification of the signal while keeping its shape almost
unchanged. This will happen when the noise strength is
such that the rate of switching events induced by it is
larger than the frequency of the rectangular signal.
Another feature to be explored is the possibility of using
the enhancement of weak signals at selected frequencies
to filter out, to some extent, the other frequency com-
ponents.
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The plan of this paper is as follows. In Sec. II, we
briefly analyze the dynamics of the system in the absence
of noise. In Sec. III, the stochastic model is presented
and the general ideas of the linear response theory (LRT)
description of SR are indicated. Situations for which SR
cannot adequately be described by LRT will also be dis-
cussed. The Fokker-Planck equation (FPE) will be nu-
merically solved and the results discussed in Sec. IV.

II. RESPONSE IN THE ABSENCE OF NOISE

In order to show the noise effects on the dynamics, it is
worthwhile to explore the system response when noise is
not present. We consider x to be the relevant degree of
freedom satisfying the nonlinear evolution equation (in
dimensionless form)

dx

E=——U(x)+f(t), (1)

where the prime refers to the derivative of the bistable
potential U(x)=—x2/2+x*/4, and where f(t)
represents a rectangular signal with period T =27/Q
and amplitude S. For driving amplitudes much smaller
than the barrier height, the system trajectories are
confined within the initial well. Linearization of Eq. (1)
around the local minimum shows that the system de-
scribes small amplitude oscillations with frequency (2
around the bottom of the well. For large driving ampli-
tudes, linearization is not correct and we analyze the dy-
namics by numerically solving Eq. (1) by means of a
fourth order Runge-Kutta integrator. For each value of
Q, there exists a corresponding amplitude S*() such
that for S <S* the dynamics are still essentially confined
within the initial well. On the other hand, for S >S*, the
system trajectories explore both wells, describing large
amplitude oscillations around the origin. S*(Q) in-
creases with the frequency in such a way that for large
frequencies, it is substantially larger than its zero fre-
quency value S*(0)=(1/3)!"2.

Away from the critical line S*(Q), the shape of the
response coincides basically with that of the driving field,
while near the critical line the output is very distorted. It
is still periodic with period T, but the shape of the trajec-
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FIG. 1. Deterministic trajectories for different amplitudes of
the driving field with Q=0.1. The solid line corresponds to S
smaller than the critical value S*. The dashed lines correspond
toS~S*and § >S*.

tory no longer resembles a rectangular signal, as can be
seen in Fig. 1. The rectangular input is generated by a
Fourier series with 20 odd harmonics. When S differs
from S*, the response contains the same harmonics as
the driving field but with amplitudes that are different
from those of the driver. For a very narrow range of .S
near the critical value, the distortion of the signal is due
not only to the different values of the amplitudes of the
odd harmonics, but also to the appearance of even ones.

III. THE STOCHASTIC SYSTEM

Let us now include the effect of noise. The system dy-
namics will be described by the Langevin equation

dx _

ar —U'(x)+f(t)+nlt), (2)

where 7(?) is a Gaussian while noise with zero mean and
{n(t)y(s))=D8&(t —s). The corresponding Fokker-
Planck equation for the probability distribution P(x,t)
reads

3 .. D 9*P

aX[U(x) [P+ 2 ox? (3)
By contrast with Egs. (1) and (2), which are nonlinear in
the unknown, the FPE is linear. Thus, the Floquet
theorem for linear time periodic problems allows us to
write P(x,t) in terms of Floquet eigenfunctions and ei-
genvalues as

3P _
at

P(x,)= S c,e "D, (x,1), )

where ®,(x,t)=®,(x,t +T). The H theorem indicates
that the long time solution of the FPE P (x,¢) has a sin-
gle functional form regardless of the initial preparation of
the system. Thus, it has to be periodic in time, i.e.,

P (x,t)=P_(x,t +T). (5)

Consequently, for any values of the noise strength and
the parameters of the driving field, the long time average

response of the system can be expanded in Fourier form
as

(x(1)),= S a,cos(nQt +¢,) . (6)

The shape of the periodic function {x ()} can in gen-
eral differ from that of f(z) for two reasons: either be-
cause expression (6) contains more harmonics than the
ones making up f(t), or because, even if they are the
same, each of them is amplified by a different amount.

Let us first consider an external force f (¢) with ampli-
tude and period such that its effect on the probability dis-
tribution can be described as a small perturbation. Then,
the first order perturbation theory of Eq. (3) leads to the
LRT result [3]

(x(1) = [ " drK(t—=7)f (1), (7)

with K (#)=0 for negative arguments. The response func-
tion K (¢) depends on the form of the potential U (x) and
the noise strength, but it is independent of the driving
field parameters. For a rectangular driver with Fourier
expansion

f()=73 fcos(mQt) (8)

one can write

(x(t), = > a'(mQ)f,,cos(mQt)

+a"(mQ)f,,sin(mQt) , 9)

where the susceptibility a(w,D)=a'(w,D)+a’ (w,D) is
the Fourier transform of K (¢). Therefore, when LRT ap-
plies, Egs. (6) and (9) show that the harmonics present in
the long time response of the system are the same as
those in the input signal. As pointed out by Dykman
et al. [2], we see that linearization does not imply a con-
stant ratio between the response and the driving field.
Indeed, LRT yields

a,cosd, =f,a'(mQ),
(10)
—a,sing,, =f, a"(mQ) .

Using the fluctuation-dissipation theorem, the suscepti-
bility can be obtained in terms of the Fourier transform
of the equilibrium time correlation function of the unper-
turbed system. Thus, if this last quantity is available, the
long time response of the system can be calculated.
Analytical and numerical works [3,4] indicate that for
fixed frequencies smaller than the relaxation frequency
within each unperturbed well, the susceptibility has a
nonmonotonic behavior with D. It reaches a maximum
for a value of the noise strength such that twice the rate
of exchange of population between wells induced by this
noise (Kramers rate) matches the driving frequency.
Thus, the degree of amplification of each driving frequen-
cy would be different for a given noise. Harmonics with
larger frequencies suffer very little amplification. As a re-
sult, LRT predicts that the shape of a rectangular input
will not, in general, be kept unchanged due to the
different degrees of amplification of the several harmon-
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ics. This dispersive character of Eq. (10) opens up the
possibility of using a noisy bistable system to separate
different frequencies in a weak input signal by adjusting
the noise so that other frequency components are filtered
out.

Perturbation theory leading to LRT might fail for
several reasons. The driving amplitude might get so large
that the potential loses its bistable character. Such a situ-
ation was analyzed by us in Ref. [5] for a sinusoidal driv-
ing field. While a resonant amplification still exists, its
effect is less dramatic than for a weak amplitude signal.
The enhancement of the amplitude is still due to the
matching of the driving frequency with that of the
switching events. The transition rate depends on the am-
plitude of the driving field but, by contrast with the weak
amplitude input, the behavior of {(x(¢)), is not well de-
scribed by a LRT with a response function constructed
from the spectral density of a zero field bistable system.

Perturbation theory also requires the noise strength to
be larger than the amplitude of the external field. Thus,
if S is small, but S > D, the effect of the external field can-
not be taken as a small perturbation of the unperturbed
dynamics and LRT becomes invalid when D <S. Dyk-
man et al. [6] have also analyzed the rate equation for
the population of the wells in the limit of very small driv-
ing frequencies. They find that, in this limit, a sinusoidal
input might get amplified and its shape greatly distorted
so the output looks like a rectangular signal.

It is interesting to analyze the response of the system to
a rectangular input of weak amplitude and very small fre-
quency as one might find strong deviations of the long
time probability distribution with respect to the unper-
turbed equilibrium one. Qualitatively, this can be under-
stood in terms of time scales. If the noise strength D is
such that the fundamental external frequency is much
smaller than the Kramers rate, the bistable potential
remains asymmetric for such a long time that the proba-
bility distribution adjusts to a single maximum local equi-
librium form around one minimum before the population
has a chance to escape the well. When the rectangular
input changes sign, there is a noise induced exchange of
population, which is very fast on the time scale of the
period T, followed by a readjustment of the distribution
to the new local equilibrium. Then, the distribution func-
tion has a single maximum for large time intervals during
which the average value remains large and almost con-
stant. Only during the short time intervals, at which
there is exchange of population, will the average change.
Thus, the expected response of the system to the weak
amplitude rectangular signal should be a large amplitude
output with a shape that is similar to the input. As D in-
creases, the amplitude of the response decreases as the
diffusive effect of the noise renders the distribution func-
tion broader in x space. On the other hand, if D gets so
small that the corresponding Kramers rate gets smaller
than Q, the system spends most of its time exchanging
population between wells and the distribution function
cannot relax to a local equilibrium form so that P (x,?)
will be double humped at all times. Then, one should ex-
pect a decrease of the response amplitude for very small
D. Clearly, there should be an interval of values for D

where the amplification is largest.

When the conditions required for LRT to be valid are
not met, even though the long time behavior of the sys-
tem is periodic in time with period 7, there is no guaran-
tee that the response would contain the same harmonics
as the driving field. Also, the relation between ampli-
tudes will no longer be given by Eq. (10).

IV. NUMERICAL RESULTS

In order to analyze quantitatively the different regimes
indicated above, we have numerically solved the FPE us-
ing the split operator method [7] to get the probability
distribution and from it, the first few moments. Let us
first consider the response of the system to a weak rec-
tangular signal with a small frequency. In Fig. 2, we plot
the ratio R of the amplitude of the average response over
the amplitude of the driver for 1=0.001 and S=0.1.
The phenomenon of SR manifests itself with the max-
imum of R for a noise strength D=0.074 for which twice
the Kramers rate [20%"=(V2/7)exp(—1/2D)] matches
Q/2. The degree of amplification gets quite large. As
discussed before, the qualitative features of the response
depend upon whether D is large or small. Next we show
results for those different regions.

In Fig. 3, we plot the time evolution of the first two cu-
mulants for D=0.1. Very quickly, the average response
relaxes to an almost rectangular signal with the same
period as the driver but with a much larger amplitude.
The second cumulant also shows a periodic behavior with
frequency 2Q, which reflects the symmetry
P(x,t)=P(—x,t +T/2) of the distribution function.
When (x (¢)) =~ =1, the distribution function has a single
peak around the average and ((x2(z))) is small. The
spikes of the second cumulant correspond to the short
time intervals at which the distribution acquires a bimo-
dal character while jumping from one well to the other.
For the case of maximum amplification (D=0.074), the
shape of the average is somewhat distorted with respect
to the input and the spikes of the second moment are a
little bit broader than for the D=0.1 case as can be seen
in Fig. 4. On the other hand, as R is maximum for
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FIG. 2. Amplification factor R vs noise strength D for two
values of the input fundamental frequency Q2=0.001 (+ signs)
and Q=0.1 (diamonds) for S=0.1.
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FIG. 3. Time evolution of the first two cumulants {x(¢)),
(solid line) and (x*(¢))) (dashed lines) for 2=0.001, $=0.1,
and D=0.1.

D=0.074, the distribution has to be narrower for this
value than for D=0.1 so the minimum value for
{x*(t)) in Fig. 4 is smaller than that in Fig. 3. For
large values of D, the shape of the rectangular input is
maintained but the degree of amplification decreases.
The diffusive effect of the noise is very strong and it is felt
all through the period of the external force. The distribu-
tion function shows two fairly broad maxima and so, the
second cumulant is almost constant and rather large. On
the other hand, for small noise strengths we have a strong
distortion of the signal as shown in Fig. 5 for D=0.05.
Here, Kramers rate is too small and, therefore, the degree
of amplification should be smaller than in Figs. 3 and 4.
The second moment is large as the distribution function
is always double humped. Fourier analysis of the average
indicates that new harmonics are not generated, so the
distortion of the shape is due to the dispersive character
of the response. Then we see that very low frequency in-
put signals of a rectangular shape can be greatly
amplified with very little distortion. This is not a univer-
sal feature in the sense that for a very low frequency
sinusoidal signal, the degree of amplification is still very
large but the shape of the output is no longer sinusoidal
but almost rectangular.

Next, we present the results obtained with external
field parameters such that LRT provides an adequate

First two cumulants

0 2000 4000 6000 8000 10000 12000
t

FIG. 4. Same as in Fig. 3 for D=0.074.
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FIG. 5. Same as in Fig. 3 for D=0.05.
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FIG. 6. Same as in Fig. 3 for 1=0.1 and D=0.1.
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FIG. 7. Same as in Fig. 3 for Q=0.1 and D=0.25.

FIG. 8.
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FIG. 9. Plots of the driving field
f(£)=0.1[cos(0.1¢)+cos(0.8¢)] and the average response for
D=0.3.

description of the system dynamics as long as the noise
values are not very small. By contrast with the situations
considered before, the distribution function P (x,?) will
remain bimodal, being only slightly perturbed with
respect to the equilibrium distribution in the absence of
driving force. The dependence of the amplification factor
R for a rectangular input with $=0.1 and ©=0.1 is
shown in Fig. 2. The maximum amplification takes place
at D =~0.25 and, as it is clear from the plots, the degree of
amplification is more modest than for the very low fre-
quency case.

In Fig. 6, the time evolution of the first two cumulants
is shown for D=0.1. There is a small amplification of the
amplitude and quite a big distortion of the rectangular
shape of the input. Fourier analysis of the output signal
reveals that this distortion is due to the different degrees
of amplification of the initial harmonics because of the
dispersivity of the system and not to the generation of
new ones. The second cumulant is quite large and almost
constant. For maximum amplification, the distortion of
the signal is still large as shown in Fig. 7. As in the previ-
ous case, the fundamental harmonics have the largest
amplification, thus causing the change in the shape. Be-
cause of the resonant behavior of {x(t)) ., the second

1003

cumulant shows oscillations such that the fluctuations are
minima when the average reaches its maximum ampli-
tude in one period. Still, the probability density is bimo-
dal and, therefore, the average cannot be amplified as
much as in the very low frequency case where the popula-
tion is concentrated alternatively in one of the two wells
for most of the period. Finally, when D is large, the
behavior of the system is qualitatively the same as for the
very low frequency case. The amplification is small and
the shape does not change much as shown in Fig. 8 for
D=1.0.

The dispersive character of the response of the system
for a fixed noise intensity leading to a selective
amplification of the low frequency components of an in-
put signal can be used to filter out the high frequencies.
In Fig. 9, we show a driving field f(¢)=0.1[cos(0.17)
+cos(0.8¢)] and the response of the system for D=0.3.
Clearly, the high frequency component has a much weak-
er contribution to the output than the low frequency.

In conclusion, in this work we have analyzed the
influence of noise and nonlinearity in the response of a
system to a periodic driving field of rectangular shape.
The analysis shows that for parameter values such that
the LRT is valid, it is possible to amplify the signal, but
because of the frequency dependence of the system sus-
ceptibility, this amplification is accompanied by a distor-
tion of its shape. New harmonics are not generated by
the system dynamics and so the response to a single fre-
quency input would be an output with the same frequen-
cy but with its phase shifted with respect to that of the
driver [3,4]. For very low frequency rectangular signals,
a stochastic resonant behavior still exists. The weak driv-
ing field perturbs greatly the dynamics. The long time
distribution function does not remain bimodal at all times
for a range of values of the noise strength. Because of
this, the noise power can be efficiently used to obtain a
large amplification with a minimum distortion of the rec-
tangular shape.
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